Почему одинаковые процессоры бывают разными

Среда, 6 марта 2019

TDP процессора – одна из важных его спецификаций, отражающая тепловые характеристики чипа. Глядя на него, можно определить, является этот ЦП «холодным» или «горячим», какие кулер и БП требуются компьютеру. Но не все верно понимают данный параметр, часто отождествляя его с электрической мощностью.

TDP (англ. «thermal design power», «расчетная тепловая мощность») – величина, указывающая средние показатели тепловыделения процессора в работе под нагрузкой. Она может считаться по разным схемам и указываться как для максимальной долговременной нагрузки (все ядра работают на полной частоте), так и других сценариев использования.

Показатель TDP не тождествен энергопотреблению, хотя и связан с ним. В большинстве случаев процессор с более высоким значением потребляет энергию (и выделяет тепло) сильнее, чем с меньшим, но только в рамках продукции одного производителя. То есть, вполне возможно, что чип AMD с заявленными 95 Вт экономичнее, чем Intel с 90 Вт, а может быть и наоборот.

TDP – гибкая величина

Показатель TDP процессора зависит от его рабочих характеристик, но поддается настройке. Производители техники могут адаптировать параметры работы чипа под специфику конкретного устройства, заставляя его придерживаться заданных рамок. Наиболее распространенными способами сделать это являются динамическое управление частотой и напряжением ЦП.

Один и тот же чип нередко используется в разноплановых устройствах. Это может быть и тонкий ультрабук с пассивной или миниатюрной системой охлаждения, и обычный лэптоп на 17" с полноценным кулером. Понятно, что возможности теплоотвода у них сильно отличаются. Поэтому разработчики настраивают тепловыделение, ограничивая его величиной, при которой чип не будет перегреваться с имеющимся кулером.

К примеру, мобильный ЦП Intel Core i5-8250U имеет базовое значение TDP на уровне 15 Вт. Но производители ноутбуков могут корректировать его как в сторону увеличения, до 25 Вт, так и уменьшения – до 10 Вт. В итоге, потребление одного и того же чипа в разных устройствах может отличаться до 2,5 раз.

Повышение тепловыделения достигается за счет использования более «агрессивного» сценария управления частотами и напряжениями. При нем процессор дольше поддерживает максимальную частоту и высокое питающее напряжение, но больше расходует заряд и сильнее греется. В щадящем режиме, напротив, происходит снижение частот при малейшем превышении заданного потребления/выделения энергии.

С чипсетами для смартфонов все обстоит точно таким же образом. Используя прожорливый флагманский чип, разработчики могут добавить в аппарат тепловую трубку, организовать отвод на корпус, и тогда он будет дольше работать на пике возможностей. Если никакие дополнительные меры по охлаждению не используются – в ядре Android, наоборот, прописывается энергоэффективный сценарий работы.

Производительность зависит от TDP

Так как при регулировке TDP подвергают изменениям сценарий управления частотами, это прямо влияет на производительность процессора в некоторых задачах. В коротких нагрузках, требующих мгновенно что-то выполнить, разница невелика. Но под статичной нагрузкой она может быть существенной.

Если требуется выполнить какую-то ресурсоемкую задачу, занимающую немного времени (несколько секунд) упомянутый i5-8250U и в режиме TDP 15 Вт, и 25 Вт, сможет развить максимальную частоту, быстродействие будет примерно одинаковым. Но если выполнять нужно что-то длительное, вроде рендеринга, кодирования видео, компиляции кода – процессор с более экономичными настройками начнет быстрее снижать частоты. Например, пока экземпляр с пределом 25 Вт будет держать базовые 1,8 ГГц, ЦП с 10 Вт начнет снижать их до 800 МГц, выполняя расчеты более чем вдвое медленнее.

Гибкая настройка – хорошо или плохо?

Сама по себе гибкая настройка тепловыделения – это хорошо, потому что производители могут адаптировать один и тот же чип для разноплановых устройств, достигая его стабильной работы в разных условиях. Но, с точки зрения потребителя, это один из «подводных камней», незаметный при выборе устройства.

Обычно параметры тепловыделения не указывают в числе основных спецификаций товара. Найти их если и можно, то только в расширенной технической документации. В итоге человек видит, что в выбранном устройстве используется Core i5-8250U, GeForce MX 150 или Snapdragon 845, но не может знать особенностей управления их питанием. Из-за этого возникает разница в производительности, которая на практике может оказаться существенной.

Большая разница в производительности, вызванная ограничениями TDP, делает идентичные чипы очень разными. На бумаге их имя и характеристики кажутся одинаковыми, но когда доходит до практических задач – отличия могут оказаться даже большими, чем между двумя соседними моделями.

Выбирая ноутбук с процессором Core i7-8565U, покупатель рассчитывает, что его быстродействие будет выше, чем у i5-8250U. Но в реальности, если лэптоп на первом имеет малую толщину и скромный кулер, а TDP ЦП в нем ограничен 15 Вт, а второй – оснащен хорошим охлаждением и ограничен 25 Вт, младшая модель процессора запросто может оказаться мощнее старшей.

Одним из примеров отличий в производительности, вызванных ограничениями тепловыделения, является Mi Notebook Air 13 первого поколения. Он оснащался графическим процессором Nvidia GeForce 940 MX, но TDP чипа снизили с 28 до 15 Вт. Это улучшило автономность, снизило нагрев, но игровая производительность ультрабука оказалась заметно ниже, чем у «обычных» ноутов с этой видеокартой, потому что GPU сильнее сбрасывал частоты под нагрузкой.

Схожая ситуация и с Apple MacBook Pro, у которых CPU Intel с суффиксом HQ работают медленнее, чем в толстых игровых ноутах. Ведь ультрабук, толщиной 1,5 см, не может столь же эффективно охлаждаться, как геймерский чемодан с большим кулером.

НАВЕРХ